If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6w^2+9w-16=0
a = 6; b = 9; c = -16;
Δ = b2-4ac
Δ = 92-4·6·(-16)
Δ = 465
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{465}}{2*6}=\frac{-9-\sqrt{465}}{12} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{465}}{2*6}=\frac{-9+\sqrt{465}}{12} $
| 6=2/3x-5 | | (x+18)^1/2=144^1/2-49^1/2 | | 1=-5x+1 | | 9=x+-6 | | 8+h=-2 | | 54=18x-9x | | 4x+66º=7x+15º | | -4=-1/2x+4 | | (-2)-n=-7 | | -70=-7(g-6) | | 28=5f+3 | | 8x=10x-38 | | {2X-5y=4 | | 6x+175º=3x+127º | | x+2(-3x-8)=-1 | | 7x+4=2x(x-8) | | x=11/2=14 | | 425=25x-(10x=250) | | 5-2(3x-4)=11 | | 11^(2x-1)=19 | | 6x-8=2(x+5) | | 48=2x+18 | | 3/4x-2=-x+3 | | 10=p+2 | | 4h-3=37 | | x+2=6/x | | 4(x+5)+2(x-3)=15+5 | | 3x+4=8x+1 | | 12/t=-3 | | -8/39*x=5/26 | | p+5/4=-3 | | x+2=6÷x |